Action of bradykinin in the submucosal plexus of guinea pig small intestine.
نویسندگان
چکیده
Intracellular recording methods with "sharp" microelectrodes were used to study actions of bradykinin (BK) on electrical behavior of morphologically identified neurons and the identification and localization of BK receptors in the submucosal plexus of guinea pig small intestine. Exposure to BK depolarized the membrane potential and elevated excitability in submucosal neurons with AH-type electrophysiological behavior and Dogiel II multipolar morphology and in neurons with S-type electrophysiological behavior and uniaxonal morphology. BK-evoked depolarizing responses were associated with increased neuronal input resistance in AH-type neurons and decreased input resistance in S-type neurons. The selective B(2) BK receptor antagonists HOE-140 (icatabant acetate) and WIN64338 [(S)-4[2-bis(cyclohexylamino)methyleneamino]-3-(2-napthalenyl)-1-oxopropylamino]benzyl tributyl phosphonium chloride hydrochloride], but not the selective B(1) receptor antagonists des-arg(10)-HOE-140 and des-arg(9)-leu(8)-BK, suppressed the BK-evoked responses. The selective B(2) receptor agonist Kallidin, but not the selective B(1) receptor agonist des-arg(9)-BK mimicked the excitatory action of BK. Western blot analysis and reverse transcription-polymerase chain reaction confirmed the expression of B(2) receptor protein and mRNA. Binding studies with a fluorescently labeled BK(2) antagonist found expression of B(2) receptors on a majority of the ganglion cells. B(2) receptors occupied 82% of the neurons that expressed immunoreactivity for neuropeptide Y, 75% of the neurons that expressed vasoactive intestinal peptide, 84% of the neurons that expressed substance P, 71% of the neurons that expressed choline acetyltransferase, and all neurons that expressed calbindin immunoreactivity. The results suggest that the B(2) receptor mediates the excitatory action of BK on submucosal plexus neurons. Pathophysiological significance of the excitatory actions on secretomotor neurons might be stimulated mucosal secretion and the secretory diarrhea associated with intestinal inflammatory states.
منابع مشابه
Metabotropic signal transduction for bradykinin in submucosal neurons of guinea pig small intestine.
Intracellular recording methods with "sharp" microelectrodes were used to study signal transduction mechanisms underlying the excitatory action of bradykinin (BK) in morphologically identified neurons in the small intestinal submucosal plexus. Exposure to BK evoked slowly activating membrane depolarization and enhanced excitability associated with increased input resistance in AH-type and decre...
متن کاملStimulation of adenosine A1 and A2A receptors by AMP in the submucosal plexus of guinea pig small intestine.
Actions of adenosine 5'-monophosphate (AMP) on electrical and synaptic behavior of submucosal neurons in guinea pig small intestine were studied with "sharp" intracellular microelectrodes. Application of AMP (0.3-100 microM) evoked slowly activating depolarizing responses associated with increased excitability in 80.5% of the neurons. The responses were concentration dependent with an EC(50) of...
متن کاملPlatelet-activating factor in the enteric nervous system of the guinea pig small intestine.
Platelet-activating factor (PAF) is a proinflammatory mediator that may influence neuronal activity in the enteric nervous system (ENS). Electrophysiology, immunofluorescence, Western blot analysis, and RT-PCR were used to study the action of PAF and the expression of PAF receptor (PAFR) in the ENS. PAFR immunoreactivity (IR) was expressed by 6.9% of the neurons in the myenteric plexus and 14.5...
متن کاملNoscapine antagonizes vasoconstrictor action of bradykinin in isolated human umbilical artery
Abstract Background: It has been demonstrated that noscapine, an antitussive opioid alkaloid, could antagonize bradykinin- induced responses such as bradykinin effects in guinea-pig ileum, cough induced by bradykinin receptor agonist and angiotensin converting enzyme inhibitors, and brain damage after brain edema both in neonatal rat model and in patients with stroke. In the present study, the...
متن کاملNeurovascular Interface in Porcine Small Intestine: Specific for Nitrergic rather than Nonnitrergic Neurons.
In the 1970s, by using classic histological methods, close topographical relationships between special areas of enteric ganglia and capillaries were shown in the pig. In this study, by application of double and triple immunohistochemistry, we confirmed this neurovascular interface and demonstrated that these zones are mainly confined to nitrergic neurons in the myenteric and the external submuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 309 1 شماره
صفحات -
تاریخ انتشار 2004